“But those are expensive to create and time consuming, so you can only do a limited number of them,” says Rev Lebaredian, vice president of simulation technologies at Nvidia. Cosmos can instead take a handful of those examples and create a three-dimensional simulation of a hospital. It will then start making changes—different floor colors, different sizes of hospital beds—and create slightly different environments. “You’ll multiply that data that you captured in the real world millions of times,” Lebaredian says. In the process, the model will be fine-tuned to work well in that specific hospital setting.
It’s sort of like learning both from your experiences in the real world and from your own imagination (stipulating that your imagination is still bound by the rules of physics).
Teaching robots through AI and simulations isn’t new, but it’s going to become much cheaper and more powerful in the years to come.
A smarter brain gets a smarter body
Plenty of progress in robotics has to do with improving the way a robot senses and plans what to do—its “brain,” in other words. Those advancements can often happen faster than those that improve a robot’s “body,” which determine how well a robot can move through the physical world, especially in environments that are more chaotic and unpredictable than controlled assembly lines.
The military has always been keen on changing that and expanding the boundaries of what’s physically possible. The US Navy has been testing machines from a company called Gecko Robotics that can navigate up vertical walls (using magnets) to do things like infrastructure inspections, checking for cracks, flaws, and bad welding on aircraft carriers.
There are also investments being made for the battlefield. While nimble and affordable drones have reshaped rural battlefields in Ukraine, new efforts are underway to bring those drone capabilities indoors. The defense manufacturer Xtend received an $8.8 million contract from the Pentagon in December 2024 for its drones, which can navigate in confined indoor spaces and urban environments. These so-called “loitering munitions” are one-way attack drones carrying explosives that detonate on impact.
“These systems are designed to overcome challenges like confined spaces, unpredictable layouts, and GPS-denied zones,” says Rubi Liani, cofounder and CTO at Xtend. Deliveries to the Pentagon should begin in the first few months of this year.
Another initiative—sparked in part by the Replicator project, the Pentagon’s plan to spend more than $1 billion on small unmanned vehicles—aims to develop more autonomously controlled submarines and surface vehicles. This is particularly of interest as the Department of Defense focuses increasingly on the possibility of a future conflict in the Pacific between China and Taiwan. In such a conflict, the drones that have dominated the war in Ukraine would serve little use because battles would be waged almost entirely at sea, where small aerial drones would be limited by their range. Instead, undersea drones would play a larger role.